General perception systems such as Perceivers can process arbitrary modalities in any combination and are able to handle up to a few hundred thousand inputs. They achieve this generality by using exclusively global attention operations. This however hinders them from scaling up to the inputs sizes required to process raw high-resolution images or video. In this paper, we show that some degree of locality can be introduced back into these models, greatly improving their efficiency while preserving their generality. To scale them further, we introduce a self-supervised approach that enables learning dense low-dimensional positional embeddings for very large signals. We call the resulting model a Hierarchical Perceiver (HiP). In sum our contributions are: 1) scaling Perceiver-type models to raw high-resolution images and audio+video, 2) showing the feasibility of learning 1M+ positional embeddings from scratch using masked auto-encoding, 3) demonstrating competitive performance on raw data from ImageNet, AudioSet, PASCAL VOC, ModelNet40 and Kinetics datasets with the same exact, unchanged model and without specialized preprocessing or any tokenization.
translated by 谷歌翻译
我们通过与与前面令牌的局部相似度,通过调节从大语料库检索的文档块来增强自动回归语言模型。尽管使用25美元\时分,我们的检索增强型变压器(RetroCro)的检索增强型变压器(RetroCr)对GPT-3和侏罗纪-1获得了可比性的性能。微调后,复古表演转换为下游知识密集型任务,如问题应答。复古结合了冷冻BERT猎犬,一种可微分的编码器和块状的横向机制,以预测基于数量级的令牌,而不是训练期间通常消耗的数量。我们通常从头开始训练复古,还可以快速改造预先接受的变压器,通过检索,仍然达到良好的性能。我们的工作通过以前所未有的规模开辟了通过显式内存改进语言模型的新途径。
translated by 谷歌翻译
近期对抗性生成建模的突破导致了能够生产高质量的视频样本的模型,即使在真实世界视频的大型和复杂的数据集上也是如此。在这项工作中,我们专注于视频预测的任务,其中给出了从视频中提取的一系列帧,目标是生成合理的未来序列。我们首先通过对鉴别器分解进行系统的实证研究并提出产生更快的收敛性和更高性能的系统来提高本领域的最新技术。然后,我们分析发电机中的复发单元,并提出了一种新的复发单元,其根据预测的运动样本来改变其过去的隐藏状态,并改进它以处理DIS闭塞,场景变化和其他复杂行为。我们表明,这种经常性单位始终如一地优于以前的设计。我们的最终模型导致最先进的性能中的飞跃,从大型动力学-600数据集中获得25.7的测试集Frechet视频距离为25.7,下降到69.2。
translated by 谷歌翻译
Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge success in challenging domains, such as chess and Go, where a perfect simulator is available. However, in real-world problems the dynamics governing the environment are often complex and unknown. In this work we present the MuZero algorithm which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics. MuZero learns a model that, when applied iteratively, predicts the quantities most directly relevant to planning: the reward, the action-selection policy, and the value function. When evaluated on 57 different Atari games -the canonical video game environment for testing AI techniques, in which model-based planning approaches have historically struggled -our new algorithm achieved a new state of the art. When evaluated on Go, chess and shogi, without any knowledge of the game rules, MuZero matched the superhuman performance of the AlphaZero algorithm that was supplied with the game rules.
translated by 谷歌翻译
Adversarially trained generative models (GANs) have recently achieved compelling image synthesis results. But despite early successes in using GANs for unsupervised representation learning, they have since been superseded by approaches based on self-supervision. In this work we show that progress in image generation quality translates to substantially improved representation learning performance. Our approach, BigBiGAN, builds upon the state-of-the-art BigGAN model, extending it to representation learning by adding an encoder and modifying the discriminator. We extensively evaluate the representation learning and generation capabilities of these BigBiGAN models, demonstrating that these generation-based models achieve the state of the art in unsupervised representation learning on ImageNet, as well as in unconditional image generation. Pretrained BigBiGAN models -including image generators and encoders -are available on TensorFlow Hub 1 .
translated by 谷歌翻译
Despite recent progress in generative image modeling, successfully generating high-resolution, diverse samples from complex datasets such as ImageNet remains an elusive goal. To this end, we train Generative Adversarial Networks at the largest scale yet attempted, and study the instabilities specific to such scale. We find that applying orthogonal regularization to the generator renders it amenable to a simple "truncation trick," allowing fine control over the trade-off between sample fidelity and variety by reducing the variance of the Generator's input. Our modifications lead to models which set the new state of the art in class-conditional image synthesis. When trained on ImageNet at 128×128 resolution, our models (BigGANs) achieve an Inception Score (IS) of 166.5 and Fréchet Inception Distance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.65.
translated by 谷歌翻译
This paper addresses the scalability challenge of architecture search by formulating the task in a differentiable manner. Unlike conventional approaches of applying evolution or reinforcement learning over a discrete and non-differentiable search space, our method is based on the continuous relaxation of the architecture representation, allowing efficient search of the architecture using gradient descent. Extensive experiments on CIFAR-10, ImageNet, Penn Treebank and WikiText-2 show that our algorithm excels in discovering high-performance convolutional architectures for image classification and recurrent architectures for language modeling, while being orders of magnitude faster than state-of-the-art non-differentiable techniques. Our implementation has been made publicly available to facilitate further research on efficient architecture search algorithms.
translated by 谷歌翻译
In this work we aim to solve a large collection of tasks using a single reinforcement learning agent with a single set of parameters. A key challenge is to handle the increased amount of data and extended training time. We have developed a new distributed agent IMPALA (Importance Weighted Actor-Learner Architecture) that not only uses resources more efficiently in singlemachine training but also scales to thousands of machines without sacrificing data efficiency or resource utilisation. We achieve stable learning at high throughput by combining decoupled acting and learning with a novel off-policy correction method called V-trace. We demonstrate the effectiveness of IMPALA for multi-task reinforcement learning on DMLab-30 (a set of 30 tasks from the DeepMind Lab environment (Beattie et al., 2016)) and Atari-57 (all available Atari games in Arcade Learning Environment (Bellemare et al., 2013a)). Our results show that IMPALA is able to achieve better performance than previous agents with less data, and crucially exhibits positive transfer between tasks as a result of its multi-task approach. The source code is publicly available at github.com/deepmind/scalable agent.
translated by 谷歌翻译
This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-ofthe-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition.
translated by 谷歌翻译
Convolutional Neural Networks define an exceptionally powerful class of models, but are still limited by the lack of ability to be spatially invariant to the input data in a computationally and parameter efficient manner. In this work we introduce a new learnable module, the Spatial Transformer, which explicitly allows the spatial manipulation of data within the network. This differentiable module can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps, conditional on the feature map itself, without any extra training supervision or modification to the optimisation process. We show that the use of spatial transformers results in models which learn invariance to translation, scale, rotation and more generic warping, resulting in state-of-the-art performance on several benchmarks, and for a number of classes of transformations.
translated by 谷歌翻译